Some Performance Compaﬁsons for an Ocean Model
on the SGI Origin 2000 and the HP V-class 2500

Benny N. Cheng
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA, U.S.A.

Abstract A state-of-the-art ocean model de-
veloped originally at MIT is currently being
tested and evaluated for assimilating satel-
lite data here at NASA-JPL. We report on
some performance results in running this
model on both the SGI Origin 2000 and the
HP 2500 V-class parallel supercomputers.

Keywords: SGI Origin, HP V-class SCA ocean
modeling, MPI, parallel programming

1 Introduction

The MIT Ocean General Circulation Model
(OGCM) is a general ocean model based on
the incompressible Navier-Stokes equations in
fluid dynamics. It is based on a consistent
set of hydrostatic, quasi-hydrostatic, and non-
hydrostatic equations, with accurate simula-
tions verified in experiments on scales of a few
centimeters to tens of kilometers of the ocean.
This model differs from other existing models
in the following areas: 1) it is discretised using
finite volume techniques, permitting a novel
treatment of topography, 2) uses height as a
vertical coordinate, 3) has a free surface com-
ponent as oppose to rigid lid model, 4) need
not make the hydrostatic approximation, 5)
has tangent-linear and adjoint counterparts, 6)
was developed and targeted to parallel comput-
ers, and finally 7) with minimal modifications,
it can be used to study the atmosphere as well.
(1]

At the Jet Propulsion Laboratory, we intend
to use this model as a platform for the assimila-

tion of the growing remote sensing oceanic data
collected from earth orbiting satellites, in par-
ticular, the TOPEX/Poseidon satellite,which
has been in operation for more than 8 years
and still operating, and it’s upcoming followon,
JASON-1. Techniques for assimilating the
data include Kalman filtering and the adjoint,
both of which will be used provide near real-
time analysis of the state of the world’s ocean,
either regionally or globally. Further details
about this project can be found in [2].

2 Computer Platforms

Our computing resources for running this
model include an SGI Origin 2000 with 128
R12000 chips, each operating at 300 Mhz. Re-
ported peak speed is at 76 Gflops, with a to-
tal of 64 Gb of memory and 6 Tb of disk
storage. The processors are arranged in a
hypercube-like topology, with Craylink connec-
tions between nodes at a bandwidth of about
600 Mb/s. The MIPS chip is reportedly capa-
ble of 2 floating point instructions per cycle,
with onchip L1 instruction and data cache size
of 32 Kb, plus an external unified secondary
L2 cache size of 8 Mb [3]. The installed OS is
the 64-bit IRIX version 6.5.

The other platform we tested on is a
Hewlett-Packard V2500 SCA (Scalable Com-
puting Architecture) with 64 PA-RISC (Preci-
sion Architecture RISC) 8500 chips, each oper-
ating at 440 Mhz. This chip is reportedly capa-
ble of 4 Flops, hence a peak speed of about 112
Gflops. It also has 1 Mb L1 data cache and 0.5

Mb L1 instruction cache, both residing on the
chip [4], but no L2 cache. Total memory ca-
pacity is identical to the Origin at 64 Gb, with
about 400 Mb of disk space. The processors are
_ connected via a toroid-like interconnect, with
SCA Hyperlink connections between nodes at
a peak bandwidth of about 3.8 Gb/s [5]. The
64-bit OS used is the HP-UX B.11.0.
Theoretically, the HP V2500 is a faster ma-
chine, by a factor of about 1.5. Plus the
size of the primary cache is several times that
of the MIPS chip. Therefore one would ex-
pect that there would be performance improve-
ments running any code on the HP machine
compared to the Origin 2000. However, we
found this was not the case with our model.

3 Performance Comparisons

The MIT OGCM is a fortran F77 code that
can be compiled either as a threaded shared-
memory code (not OpenMP) or as a mes-
sage passing MPI code. Extensive tests done
on the Origin with the Multiprocessing (MP)
threads show little to be gained by switching
to shared-memory code, hence the MPI version
of the code was selected. This has a lot to do
with memory being unsatisfactorily distributed
among the processors, resulting in highly un-
even performance, especially with large num-
ber of concurrently running users. With the
MPI code, the performance numbers are gen-
erally more stable, for reasons that are proba-
bly related to the way MPI was implemented
on the machine.

On both machines, we strive to choose to
the best of our knowledge the highest level of
optimization allowed by the compilers. On the
Origin, the following compiler optimization
flags were utilized:

-03 -n32 -mips4
=-0PT:01imit=0:roundoff=3:div_split=0N

The -03 flag indicates aggressive optimiza-
tion by the compiler, ”generally seeking the
highest-quality generated code even if it re-

quires extensive compile time”, according to
the man pages. -n32 and -mips4 generates an
n32 object with the full MIPS 1V instruction
set. For the additional OPT flags, 01imit=0
means avoiding any automatic cutoff for the
size of routines that are optimized. The de-
fault for -03 is 3000 lines. roundoff=3 enables
all mathematically valid roundoff techniques to
be applied, at the cost of losing some precision.
div_split=0N splits division of x/y as x*(1/y),
since multiplication is faster and cheaper than
division.

On the V2500, the following optimization
flags were applied:

+03 +0fastaccess

+03 indicates full optimization across all sub-
programs within the source file, including sub-
program cloning and inlining. +0fastaccess
enables fast access to global data.

The code was then ran on 64 processors on
both the Origin and the V2500. The results
show that the runs on the Origin finish on the
average two times faster than on the V2500.
The code runs at a speed of about 8 Gflops on
the Origin, while clocking in at only 4.2 Gflops
on the V2500.

The primary cause of why the code runs
slower on a supposedly faster machine wasn’t
too difficult to locate. Tests with sequential
non-MPI code show that V2500 is indeed a
faster machine. So we decided to look a little
closer at the MPI calls themselves. Utilizing
the mpiview instrumenting tool on the V2500,
Figure 1 shows the total time for all 64 CPUs
spent by the code doing each of the MPI calls.
It is clear from the figure that a large amount
of time was spent doing MPI_Recv calls, about
12910/64 = 201.8 secs execution time on the
average. Though nothing like the mpiview
GUI tool was available on the Origin, a cor-
responding instrumentation (Figure 2) on the
Origin using the Speedshop ssrun tool shows
that far less time was spent by the Origin on
the MPI_Recv calls compared to the V2500,
about 6546/64 = 102.3 secs on the average.
Percentagewise, about 26% of the wallclock

Routine summary - Time comparison

Time (sec)

n
D
N
N
\
\
N

Kait §
Init
create N

MPI_Recv
HPI
Finalize §
HP;

Allreduce %

MPI_Isend

MPI_Barrier QR

HMPI
MPI _Waitall §
MPI
MPI_Cart

B Total elapsed time
[] Total overhead time
Total blocking time

Figure 1: V2500 MPI timings

time was spent on MPI_Recv by both V2500
and the Origin 2000.

We are therefore forced to conclude that the
observe differences in wall clock time when run-
ning the model are mostly due to the influ-
ences of the MPI library, which very likely was
not optimized on the V2500. There maybe
other factors involving hardware, but we be-
lieved this to be the major cause.

4 Conclusions

At JPL, we are in constant search for the best
platform to run our complex computer models,

Admin Conflg Views Bxeciwtalde [hread Help
Task:! SpeedShop: usertime,caliper_usage

Incl. Excl.

Total Tatal
(secs) (secs)
6.60@ 8.93@ PMPI_Barrier A

1

3.544 B.808 PMPI_Cart_create
28.668 8.008 PMPI_Finalize

3.668 8.898 PMPI_Init
82.668 8.990 PMPI_lIsend
£545.730 8.728 PMPI_Recy y
~ l
Search: . . . '.T .i

EHideUchuunsi Show Node ”Smml%.f)imwnued&uce[
]

Figure 2: Origin MPI timings

such as an OGCM. We have on one hand an
SGI Origin 2000, which is a symmetric multi-
processing (SMP) system in a hypercube-like
interconnection powered by the MIPS chip
operating at 300 Mhz. It is scalable, with
a cache-coherent non-uniform memory access
(ccNUMA) architecture. On the other hand,
we currently also have access to an HP V2500
SCA SMP system powered by PA-RISC chips
at 440 Mhz. It is also scalable, with ccNUMA
architecture in a toroid-like interconnection.
The best optimization flags to our knowledge
are applied to the compiler when compiling our
OGCM code for each of the above machines.
Running the same model on both machines,
the results were unexpected, with the suppos-
edly faster V2500 machine actually performing
at about half the speed of the Origin. Analysis
with performance and profiling tools show that
the main cause of the timing differences were
due to the non-optimal library calls being used
by the compiler, in particular the MPI library,
as demonstrated by our OGCM code.

Acknowledgement

This work is performed at the Jet Propulsion
Laboratory, California Institute of Technology,
under contract with the National Aeronautics
and Space Agency. Reference herein to any

specific commercial product, process, or ser-
vice by trade name, trademark, manufacturer,
or otherwise, does not constitute or imply its
endorsement by the United States Government
or the Jet Propulsion Laboratory, California
Institute of Technology. We highly appreciate
the comments and contributions of Mahesh Ra-
jan of HP and the Center for Advance Comput-
ing and Research at Caltech in the preparation
of this paper.

References

[1] The MIT Climate Modeling Initiative.
http://geoid.mit.edu/climatemodel/
oceanmodel.htm

[2] The ECCO Project.
http://ecco.jpl.nasa.gov

[3] SGI 2000 Series Applications Programming
& Optimization, Parts I and II. SGI Global
Education Courseware, February 2000.

[4] HP Business and Technical Computing.
http://www.hp.com/computing/
framed /technology/micropro/pa-
8500/

[5] The HP SCA Hyperlink.
http://www.cacr.caltech.edu/~mrajan/
ppt_pres/v2500_arch/s1d009.htm

